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Abstract

Two major approaches exist for creating animatable hu-
man avatars. The first, a 3D-based approach, optimizes a
NeRF- or 3DGS-based avatar from videos of a single per-
son, achieving personalization through a disentangled iden-
tity representation. However, modeling pose-driven defor-
mations, such as non-rigid cloth deformations, requires nu-
merous pose-rich videos, which are costly and impractical
to capture in daily life. The second, a diffusion-based ap-
proach, learns pose-driven deformations from large-scale
in-the-wild videos but struggles with identity preservation
and pose-dependent identity entanglement. We present
PERSONA, a framework that combines the strengths of both
approaches to obtain a personalized 3D human avatar with
pose-driven deformations from a single image. PERSONA
leverages a diffusion-based approach to generate pose-rich
videos from the input image and optimizes a 3D avatar
based on them. To ensure high authenticity and sharp ren-
derings across diverse poses, we introduce balanced sam-
pling and geometry-weighted optimization. Balanced sam-
pling oversamples the input image to mitigate identity shifts
in diffusion-generated training videos. Geometry-weighted
optimization prioritizes geometry constraints over image
loss, preserving rendering quality in diverse poses.

1. Introduction

Creating an animatable human avatar is a long-standing
challenge in computer vision and graphics. An animat-
able human avatar is a representation that (1) can be
driven by novel whole-body poses and facial expressions
and (2) can be rendered from any viewpoint. Early ap-
proaches [7, 27, 41, 42] relied on multi-view video data and
accurately tracked 3D poses. While these methods achieved
impressive results in controlled environments, their prac-
tical applicability was limited due to the difficulty of ac-
quiring such data in everyday scenarios. Recent meth-

Authenticity

(a) Existing
_ 3D-based methods

/ \_ (c)PERSONA (Ours)

\ (b) Existing
* _diffusion-based methods_ ~
Inputimage | e — -

Pose-driven deformations

Figure 1. Comparison of (a) existing 3D-based method [44],
(b) existing diffusion-based method [66], and (c) our PERSONA.
PERSONA integrates the strengths of both approaches to achieve
a personalized whole-body 3D avatar with pose-driven deforma-
tions.

ods have significantly lowered data requirements, allowing
avatars to be built from casually captured short monocu-
lar videos [9, 14, 18, 19, 24, 37, 43] or even a single im-
age [15, 33, 63, 66], eliminating the need for multi-view
recordings and precisely tracked 3D poses.

Fig.1 illustrates the two dominant approaches for cre-
ating animatable human avatars. The first, a 3D-based
approach[9, 14, 18, 19, 24, 37, 43-45, 70] (Fig.1 (a)),
combines neural rendering techniques (e.g., NeRF[34],
3DGS [21]) with 3D human parametric models (e.g.,
SMPL [32], SMPL-X [40]). Neural rendering captures ap-
pearance and geometry, while parametric models enable an-
imation. Early methods [9, 14, 18, 19, 24, 37, 43] recon-
struct avatars from short monocular videos of subjects ro-
tating in an A-pose. More recent approaches [44, 45, 70]
directly generate animatable 3D Gaussian avatars in a feed-
forward manner. This framework allows for clear dis-
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entanglement of identity and pose, enabling personalized
avatar creation and faithful identity preservation. However,
as these methods animate avatars via 3D parametric mod-
els that mainly support rigid deformations, capturing pose-
driven deformations such as non-rigid clothing motion re-
quires large-scale pose-diverse datasets. Acquiring such
data per subject is costly and impractical, leading most 3D
methods to rely on static or simple-pose datasets. As a
result, these avatars often lack expressiveness in handling
complex, pose-dependent clothing deformations.

The second approach, a diffusion-based method (Fig. |
(b)) [15, 33, 58, 63, 66, 69], generates animated human
videos directly from a conditional 2D pose sequence us-
ing diffusion-based generative models [4, 12, 46, 54-57],
without relying on neural rendering or parametric models.
Trained on large-scale video datasets, these models effec-
tively capture pose-driven deformations. However, they
face significant challenges in identity preservation. They
struggle to 1) retain the identity of the person in the input
image and 2) maintain identity consistency when animating
avatars, resulting in limited personalization capability. This
limitation arises because identity representation is not fully
disentangled from pose, often causing pose-dependent iden-
tity variations that distort the subject’s original appearance.

We present PERSONA (Fig. | (c)), a framework for cre-
ating personalized 3D avatars with pose-driven deforma-
tions from a single image by leveraging diffusion-generated
training videos. This eliminates the need for extensive per-
individual data capture, making the pipeline highly scal-
able. PERSONA combines the strengths of 3D-based and
diffusion-based approaches—3D-based methods effectively
preserve identity but struggle with pose-driven non-rigid de-
formations in casually captured data (e.g., a short monocu-
lar video of a subject rotating in an A-pose). In contrast,
diffusion-based methods capture pose-dependent deforma-
tions but lack personalization. Our approach bridges this
gap, achieving both identity preservation and pose-driven
deformations in a scalable and efficient manner.

We introduce two key components to address the main
challenges. First, we propose balanced sampling to ensure
high authenticity in personalization. Diffusion-generated
training videos often fail to fully preserve identity, leading
to inconsistencies across poses. To mitigate identity shifts,
our balanced sampling oversamples the input image during
avatar optimization. In addition, we prevent baked-in arti-
facts such as shadows and pose-dependent geometry (e.g.,
cloth wrinkles) of the input image. This approach enhances
identity preservation while minimizing baked-in artifacts in
novel poses.

Second, we propose geometry-weighted optimization to
maintain sharp renderings across diverse poses. Diffusion-
generated videos often contain inconsistent or artifact-prone
textures, and directly optimizing the avatar on such frames

Methods Pose-invariant ID Pose-driven Single img.
deform.
GaussianAvatar [14] v v X
ExAvatar [37] v v X
IDOL [70] v X v
AniGS [45] v X v
LHM [44] v X v
Animate Anyone [15] X v v
MimicMotion [66] X v v
Champ [69] X v v
Stable Animator [58] X v v
PERSONA (Ours) v v v

Table 1. Comparison of existing human avatar creation methods
and the proposed PERSONA. The first block [14, 37, 44, 45, 70]
represents 3D-based approaches, while the second block [15, 58,
66, 69] corresponds to diffusion-based approaches. Each col-
umn indicates whether the avatar’s identity representation is pose-
invariant, whether it supports pose-driven deformations (e.g., non-
rigid cloth deformations), and whether it can be created from a
single image.

degrades visual quality. Balanced sampling alone is insuf-
ficient for preserving sharp renderings in poses different
from the input image, as the pose-driven deformation mod-
eling module differentiates between the input image and
generated frames based on their pose information, causing
the model to adapt to the low-quality outputs of generated
frames. Simply detaching textures from pose-driven defor-
mation modeling is ineffective, as image loss still encour-
ages geometry to replicate artifacts from generated frames,
leading to degraded renderings. To address this, geometry-
weighted optimization assigns low image loss weights and
high geometry loss weights. Since geometry (e.g., binary
mask, depth maps, normal maps, and part segmentations)
remains stable despite texture inconsistencies, it serves as a
reliable constraint for non-rigid deformations. Additionally,
omitting scale offsets in pose-driven deformation modeling
prevents blurriness, significantly contributing to sharp ren-
derings across diverse poses.

Despite the complementary strengths of 3D-based and
diffusion-based methods in personalization and pose-driven
deformations, few studies have effectively integrated them.
We hope our work provides valuable insights for both re-
search directions. Our key contributions are as follows:

* We propose PERSONA, a framework for creating person-
alized 3D avatars with pose-driven deformations from a
single image by leveraging diffusion-generated pose-rich
training videos, eliminating the need for extensive per-
individual video capture.

* We introduce balanced sampling to ensure authentic iden-
tity consistency. It mitigates identity shifts in diffusion-
generated videos while preventing baked-in artifacts such
as shadows and pose-dependent geometry.

* We propose geometry-weighted optimization, which pri-
oritizes geometry constraints over image loss, ensuring



sharp renderings across diverse poses.

2. Related works

Tab. 1 compares existing 3D-based and diffusion-based hu-
man avatar creation methods and the proposed PERSONA.
3D-based human avatars. Early works [1, 3, 27-29, 38,
39, 41, 42, 68] required accurate 3D pose tracking with
multi-view images. Since accurate 3D pose tracking is
rarely available in daily life, recent works focus on creat-
ing 3D avatars from casually captured monocular videos.
Jiang et al. [19] introduced NeuMan, an in-the-wild dataset
with a NeRF-based baseline. Guo et al. [9] proposed
self-supervised scene-human decomposition, while Jiang et
al. [18] developed a fast 3D avatar pipeline. Kocabas et
al. [24] and Hu et al. [14] leveraged 3DGS to improve rep-
resentation and regression from a posed SMPL [32] mesh.
Liu et al. [31] introduced a whole-body avatar without facial
expression animation, and Deng et al. [8] applied image-
to-image translation for rendering. Recent 3DGS-based
methods further refine avatars, including Gaussian-mesh as-
sociations [51], hybrid surface-mesh representations [37],
and gradient-based optimization refinements [13]. Xiu et
al. [62] generated avatars from personal photo collections.
Concurrently, Zhuang et al. [70] and Qiu et al. [45] pro-
posed single-image 3D avatar frameworks trained on static
3D scans with multi-view renderings. However, they do not
support non-rigid deformations, as capturing diverse poses
and clothing behaviors is difficult, limiting the availabil-
ity of suitable training data. We address this by leveraging
diffusion-generated videos, avoiding the need for extensive
3D data capture.

Diffusion-based human avatars. With the success of re-
cent generative models for image [12, 46, 54-57] and video
generation [4], dedicated generative models have been de-
veloped to animate a human from a single reference image
using target 2D pose sequences. Unlike 3D-based avatar
creation methods, which rely on casually captured short
monocular videos, these generative models leverage large-
scale datasets to learn the prior distribution of human mo-
tion. Xu et al. [63] developed a video diffusion model to en-
code temporal dynamics, while Hu et al. [15] incorporated
spatial attention for enhanced detail preservation. Zhang et
al. [66] introduced confidence-aware pose guidance, and
Men et al. [33] designed compact spatial encodings that ac-
count for the 3D nature of videos. Tu ef al. [58] proposed
an ID Adapter for identity preservation, and Zhu et al. [69]
used SMPL renderings [32] as a conditioning signal for hu-
man video generation.

3D human recovery from a single image. 3D human pose
estimation methods [6, 20, 25, 30, 35, 36, 47] regress 3D
joint angles and shape parameters of 3D human models [32,
40] from a single image. While these representations are an-
imatable, they lack high-fidelity detail due to their reliance
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Figure 2. The pipeline of PERSONA. The mean offset from MLPs
is used to represent pose-driven deformations.

on simplified naked body geometry without textures. 3D re-
construction methods [2, 10, 16, 17, 26, 48, 49, 53, 60, 61,
67] recover posed 3D human geometry from a single image,
with some approaches [2, 16, 17, 26, 48, 53, 67] also re-
constructing texture. Although these methods achieve high-
fidelity reconstruction, their animation capability remains
limited, as posed 3D scans are inherently difficult to ani-
mate [50].

3. Pipeline of PERSONA

Fig. 2 shows the pipeline of PERSONA.

Representation. We design PERSONA by combining the
SMPL-X [40] parametric model with 3D Gaussian Splat-
ting (3DGS) [21, 64]. SMPL-X enables whole-body anima-
tion, while 3DGS supports texture and geometry modeling
along with rendering. Following ExAvatar [37], we adopt
a hybrid representation of surface mesh and 3D Gaussians.
Each vertex of the SMPL-X template mesh is modeled as a
3D Gaussian, with connectivity inherited from the SMPL-
X triangle topology. To enhance generalization to novel
views, we use isotropic Gaussians with constant opacity set
to one.

Architecture. With the optimizable Gaussian features (i.e.,
means, scales, and RGB colors), we introduce mean off-
sets to model pose-driven deformations. These offsets are
predicted by multi-layer perceptrons (MLPs), which take
as input the triplane features of each Gaussian point in the
canonical space along with the 3D poses. To enhance gen-
eralization, the MLPs utilize only the 3D poses of 4-ring
neighboring joints while setting non-neighboring joints to
zero, following Saito et al. [50]. The final mean offsets,
combined with facial expression-dependent vertex offsets
from SMPL-X, are applied to the means in the canonical
space.

Animation and rendering. The 3D human avatar is con-
structed in a canonical space and animated using SMPL-X
3D pose 6 and facial expression parameter 1. Each body
Gaussian is assigned the average skinning weight of its 16
nearest SMPL-X template vertices, while original SMPL-X
weights are retained for hands and face. The 3D Gaussians
are animated using linear blend skinning (LBS), and the fi-
nal rendering is performed with Mip-Splatting [64].



4. Generating training videos from an image

4.1. Pose-rich video generation

As shown in Fig.3, we generate pose-rich training videos
using the diffusion-based human animation method Mim-
icMotion [66]. The generated videos and the input image
are used to construct our final avatar. These videos effec-
tively compensate for the limited pose and deformation in-
formation available in a single image. In particular, they
reveal how clothing deforms across different poses, which
is essential for modeling pose-driven (i.e., non-rigid) de-
formations. We generate various motion types, including
dance sequences with peak poses, and rotating, light punch-
ing, and kicking actions that contain milder pose variations.
We adopt MimicMotion for the training video generation
as it outperforms other open-source diffusion-based meth-
ods [15, 58] for our task.

4.2. Geometric ID-preserving video generation

One of the key challenges in diffusion-based video gen-
eration is preserving the geometric identity of the person in
the input image, such as bone lengths. To address this, we
combine identity-related SMPL-X parameters (e.g., shape)
from the input image with target 3D poses that define the
motion for animation. These target motions include a di-
verse range of actions, from mild (e.g., rotation and light
gestures) to strong (e.g., dancing and kicking), and are
extracted in advance from public videos using the ExA-
vatar [37] fitting process. We project the resulting SMPL-
X keypoints to 2D space to create driving pose videos,
which are used as input to diffusion-based animation meth-
ods [58, 66]. By using identity-related SMPL-X parame-
ters from the input image, we better preserve the subject’s
identity compared to prior methods [58, 66], which rely on
aligning a small number of vertical keypoints in the 2D
space. Moreover, pre-computed 3D poses eliminate the
need for the costly fitting process required by prior video-
based methods [14, 37].

5. Personalize with pose-driven deformations

5.1. Balanced sampling

Balanced sampling. Fig. 4 (a) illustrates how balanced
sampling alternates between the input image and gener-
ated video frames during training, effectively oversampling
the input image. This helps prevent authenticity loss, as
diffusion-generated videos often distort the subject’s iden-
tity, especially in the face region. By using the input im-
age more frequently, our approach maintains identity con-
sistency in visible areas.

 Diffusion-based
animator

Input image

~

Figure 3. We use a diffusion-based animator [66] to generate pose-
rich training videos from a single image. The input image and the
generated videos together form our training set.

Reducing baked-in artifacts. Oversampling can introduce
baked-in artifacts from the input image, including shadows
in textures and seam artifacts between visible and invisible
regions. These artifacts become embedded in the avatar’s
canonical space, causing issues when animating in novel
poses, as they do not naturally adapt to new viewpoints or
poses. To mitigate artifacts, we apply two strategies when
supervising with the input image.

First, to reduce seam artifacts between visible and in-
visible regions, we identify seam boundaries by applying a
Sobel filter to rendered positional maps from the canonical
space, as shown in Fig. 5. The positional map is obtained
by encoding the normalized 3D coordinates of Gaussians
in the canonical space as RGB and rendering them in the
posed screen space. Since the canonical space (i.e., A-pose)
spatially separates body parts, abrupt changes in the ren-
dered positional map typically indicate transitions between
unrelated regions—approximating seam boundaries. Un-
like simple foreground masks, this approach can also detect
internal boundaries between different body parts. We reg-
ularize these regions using separate RGBs supervised only
on generated videos, which are free from the oversampling
artifacts of the input image. Second, to avoid baked-in shad-
ows, we use albedo images from Careaga et al. [5] as addi-
tional supervision, which contain minimal shading and help
prevent shadow artifacts in the texture.

5.2. Geometry-weighted optimization

Geometry-weighted optimization. Fig. 4 (b) illustrates
that geometry-weighted optimization applies low image
loss weights and high geometry loss weights when opti-
mizing MLPs for pose-driven deformation modeling. In
this way, we mitigate rendering degradation caused by in-
consistent and artifact-prone textures in generated frames.
This approach enhances the robustness of the optimiza-
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Figure 4. Two core components of PERSONA: balanced sampling for identity preservation and geometry-weighted optimization for sharp

renderings in pose-driven deformations.

(b) Positional map
in the canonical space

(c) Positional map
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(d) Detected
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(a) Image

Figure 5. Seam boundary detection from positional maps. We
obtain (c) the positional map by applying the pose to (b), then
apply a Sobel filter to (c) to detect boundaries between different
body parts as well as between foreground and background.

tion pipeline against texture artifacts in diffusion-generated
frames, ensuring sharper renderings in poses different from
the input image. Since per-frame pose information is used
for pose-driven deformation modeling, balanced sampling
alone (Sec. 5.1) is insufficient to maintain rendering quality
in poses different from the input image. The pose-driven de-
formation modeling module differentiates between the in-
put image and generated frames based on their poses, lead-
ing to sharp renderings when the pose matches the input
image, but degraded quality in novel poses as the model
adapts to artifacts in generated frames. Simply detaching
textures from pose-driven deformation modeling is ineffec-
tive, as image loss still encourages geometry to replicate
blur and artifacts of the generative videos.

Geometry-weighted optimization utilizes binary masks,

depth maps, normal maps, and part segmentations extracted
from diffusion-generated videos using SAM [23] and Sapi-
ens [22] and compares them with the rendered outputs.
Since geometry (i.e., binary masks, depth maps, normal
maps, and part segmentations) remains stable despite varia-
tions in texture quality, it serves as a reliable foundation for
modeling pose-driven deformations while preserving ren-
dering sharpness. The binary masks are rendered with a
color value of one. To render depth maps, the depth value of
each Gaussian is treated as a color attribute. Normal maps
are computed per Gaussian using normal vectors, leverag-
ing the hybrid representation of ExAvatar [37], and are sim-
ilarly treated as colors. Finally, part segmentations are rep-
resented as RGB images, with colors assigned based on the
Sapiens palette.

Preserving sharp renderings with mean offsets. To
model pose-driven deformations, we apply only mean off-
sets to isotropic Gaussians. This approach shifts each
Gaussian’s position while keeping its shape and appear-
ance fixed, allowing the avatar to deform without blurring
textures. Such position-only deformation preserves texture
sharpness, similar in spirit to mesh-based animation where
vertex displacements alone maintain high-frequency texture
details. In contrast, using scale offsets leads to blurry re-
sults, as Gaussians grow or shrink instead of shifting, and
RGB offsets risk copying unreliable colors from generated
frames. Although mean offsets could introduce gaps, dense
high-resolution Gaussians and their overlapping nature en-
sure seamless renderings, even during large deformations
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Figure 6. Comparison of various pose-driven deformation modeling strategies. Our geometry-weighted optimization is essential for

maintaining authentic and sharp renderings.
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Figure 7. Effectiveness of our balanced sampling. Without it, the
avatar loses the identity of the input image. The 4DGS approach
of AniGS [45] also fails to preserve the subject’s identity.

like dance motions.

6. Optimization

We optimize 3D Gaussian features (i.e., means, scales,
and RGB colors), triplane, MLP weights, and per-frame
SMPL-X parameters. For supervision, we use standard
image reconstruction loss functions, including L1, SSIM,
and LPIPS [65], along with geometry regularizers such as
Laplacian regularization, following Moon et al. [37]. In
geometry-weighted optimization, we minimize the L1 dis-
tance between the rendered outputs and target geometry
maps. Diffusion-generated videos often produce implausi-
ble hand shapes. To enforce geometric plausibility, we min-
imize the L1 distance between hand masks rendered with
3DGS and those rendered with SMPL-X meshes (not Gaus-
sian points) using a standard mesh renderer, ensuring that
the hand shape closely resembles SMPL-X hands.

7. Experiments

7.1. Protocol

We conduct quantitative comparisons against state-of-the-
art methods using NeuMan [19] and X-Humans [52]
datasets, following the evaluation protocols of previous

(a) Input image (b) Ours wo. boundary (c) Ours

Figure 8. Effectiveness of our detected boundary in balanced sam-
pling. Without it, colors from one body part can leak into others,
leading to noticeable artifacts.

works [14, 37, 52]. We measure rendering quality with
PSNR, SSIM, and LPIPS [65] metrics. NeuMan provides
short monocular videos captured in the wild, while X-
Humans offers a diverse range of whole-body motions, in-
cluding various body poses, hand gestures, and facial ex-
pressions. For qualitative comparisons, we evaluate ani-
mation capability using in-the-wild videos featuring intense
dance performances, different from our training set.

77.2. Ablation studies

Balanced sampling. Fig. 7 demonstrates the importance of
balanced sampling in preserving authenticity. Without it,
as shown in Fig. 7 (b), the input image is underused dur-
ing training, resulting in an avatar with a different identity
and blurry textures due to inconsistencies in the generated
frames. Fig. 7 (c) shows that 4DGS-based method [45]
still suffers from identity loss and blurry renderings due
to the severe imbalance between the input image and the
generated frames. Their 4DGS treats inconsistencies across
frames as a temporal sequence and trains MLPs with spatio-
temporal features to differentiate the input image from gen-
erated frames. Fig. 8 shows that our boundary detection is
necessary to prevent color leaking between different body
parts.

Geometry-weighted optimization. Fig. 6 highlights the
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Figure 9. Effectiveness of our pose-driven deformations. (b,c): Previous 3D-based methods [44, 45] embed input-image-specific defor-
mations (highlighted in red) into the avatar, leading to baked-in artifacts when animated to new poses. (d-g): Our method, PERSONA,

mitigates this issue by explicitly modeling pose-driven deformations.

(a) Input image (b) AniGS (c) LHM
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Figure 10. Comparison of diffusion-based state-of-the-art methods and our PERSONA.

importance of geometry-weighted optimization in preserv- ing authentic and sharp renderings for pose-driven deforma-



Methods 00028 00034 00087
PSNRT  SSIM{ LPIPS| | PSNRT SSIMT LPIPS| | PSNRT SSIM{ LPIPS]
* Available data: 10 videos and 3D registrations from multi-view images
X-Avatar [52] 28.57 0.976 0.026 28.05 0.965 0.035 30.89 0.970 0.030
ExAvatar [37] 30.58 0.981 0.018 28.75 0.966 0.029 32.01 0.972 0.025
* Available data: a single image
ExAvatar [37] 21.83 0.962 0.058 23.04 0.951 0.066 24.58 0.958 0.061
TeCH [16] 20.28 0.950 0.059 22.26 0.938 0.055 24.74 0.945 0.052
SiTH [11] 1500 0934  0.110 1828 0935  0.098 2165 0950  0.087
Champ [69] 18.96 0.953 0.070 20.17 0.949 0.082 25.19 0.960 0.057
MimicMotion [66] 21.02 0.959 0.053 23.49 0.953 0.051 27.67 0.963 0.038
Stable Animator [58] 21.66 0.962 0.050 23.53 0.952 0.051 28.04 0.963 0.039
AniGS [45] 23.96 0.965 0.040 24.80 0.955 0.052 27.46 0.964 0.043
Ours wo. pose-driven deform. 23.15 0.968 0.049 26.32 0.960 0.047 29.25 0.966 0.038
PERSONA (Ours) 24.76 0.972 0.040 27.60 0.963 0.042 29.79 0.968 0.035
Table 2. Comparisons with previous works on the test set of X-Humans [52].
tions. Without it, inconsistent textures in generated frames Methods | PSNRT  SSIM?  LPIPS|
cause identity shifts and blurriness. Fig. 6 (c) demonstrates * Available data: a video
. X } o HumanNeRF [59] 2706 0967  0.019
effective pose-driven deformation, where raising the arms InstantAvatar [ 18] 2847 0972 0.028
causes the clothing to move further away from the waist, NeuMan [19] 2932 0972 0014
reflecting a natural interaction between the body and the Vid2Avatar [9] 3070 0980 0.014
fabric. In contrast, Fig. 6 (b) shows unnatural adherence GaussianAvatar [14] 2994 09800012
o ; > e Y > 3DGS-Avatar [43] 2899 0974 0016
with the clothing remaining tightly fitted to the body despite ExAvatar [37] 3480 0984  0.009
the raised arms due to the lack of deformation modeling. * Available data: a single image
Fig. 6 (d) and (e) illustrate how high image loss weights ExAvatar [37] 2495 0963 0.031
. . . . TeCH [16] 2282 0953  0.039
degrade visual quality, forcing geometry to replicate tex- SITH[11] 23.96 0.957 0,031
ture inconsistencies and resulting in blurry renderings, even Champ [69] 2727 0968  0.021
when RGB is detached. Finally, Fig. 6 (f) and (g) validate MimicMotion [66] 26.12 0970 0.029
our choice to use only mean offsets, as scale offsets lead to StableAnimator [55] 2658 0968 0025
) . . i . AniGS [45] 2827 0969  0.027
excessive blurring, as discussed in Sec. 5.2. All variants are LHM [44] 2622 0967  0.025
evaluated under the same balanced sampling and geometry Ours wo. pose-driven deform. 2802 0972 0.025
loss settings for a fair comparison. PERSONA (Ours) 2920 0974  0.021

Pose-driven deformations. Fig.9 illustrates the effective-
ness of our pose-driven deformations. Existing methods[44,
45] embed deformations present in the input image, which
become baked-in artifacts when the avatar is animated to
novel poses. In the first row, for example, the left arm and
thigh should fall naturally due to gravity, but remain unnat-
urally bent. In the second row, the right side of the body
similarly fails to respond naturally to gravity. In both cases,
long skirts are often misinterpreted as pants, resulting in in-
correct deformation behavior. In contrast, PERSONA ex-
plicitly models pose-driven deformations, allowing avatars
to respond naturally to novel poses without inheriting input-
specific artifacts. This leads to significantly improved visual
fidelity under diverse poses.

7.3. Comparisons to state-of-the-art methods

Fig.9, Fig.10, Tab.2, and Tab.3 compare PERSONA with
state-of-the-art methods [44, 45, 58, 66, 69]. Fig.9 shows
that compared to existing 3D-based approaches [44, 45],
PERSONA captures natural pose-driven clothing deforma-
tions more effectively, thanks to our geometry-weighted
optimization. In addition, Fig.10 shows that compared to

Table 3. Comparisons of previous works on the test set of Neu-
Man [19].

diffusion-based approaches [58, 66, 69], PERSONA bet-
ter preserves identity, accurately maintaining facial features
and clothing patterns through balanced sampling. Tab.2 and
Tab.3 show that PERSONA outperforms all single-image-
based methods, demonstrating the necessity and effective-
ness of pose-driven deformations. All comparisons exclude
background pixels and use official implementations.

8. Conclusion

We introduce PERSONA, a framework that creates person-
alized 3D avatars with pose-driven deformations from a sin-
gle image using diffusion-generated training videos. By
combining 3D- and diffusion-based approaches, PERSONA
ensures identity preservation and natural deformations. To
address authenticity loss and rendering artifacts, we pro-
pose balanced sampling and geometry-weighted optimiza-
tion. Our results show that PERSONA outperforms exist-
ing methods, providing a scalable solution for high-quality
avatar creation.



Supplementary Material for

“PERSONA: Personalized Whole-Body 3D

Avatar
with Pose-Driven Deformations from a Single
Image”

In this supplementary material, we provide more exper-
iments, discussions, and other details that could not be in-
cluded in the main text due to the lack of pages. The con-
tents are summarized below:

e Sec. S1: More comparisons to state-of-the-art methods.
e Sec. S2: Rendered avatars in the canonical space.

» Sec. S3: More ablation studies.

» Sec. S4: Limitations of the proposed PERSONA.

S1. Comparisons to state-of-the-art methods

Running time comparison. Tab. S1 further highlights that
PERSONA achieves real-time rendering speeds, whereas
existing diffusion-based methods suffer from slow infer-
ence. All running times were measured under the same
hardware setup using a single RTX A6000.

User study. Fig.S| presents results from our user study,
where participants strongly preferred our approach over ex-
isting diffusion-based methods. We conducted the study
with 40 participants, each answering 10 questions in which
they selected the image that best matched the input sin-
gle image. The compared methods included Champ [69],
MimicMotion [66], StableAnimator [58], and our PER-
SONA. Fig. S2 provides an example from the study, with
(a), (b), (c), and (d) corresponding to MimicMotion [66],
Champ [69], our PERSONA, and StableAnimator [58], re-
spectively.

Qualitative comparisons. Fig.S3 compares our PER-
SONA with 3D-based state-of-the-art methods[44, 45].
PERSONA achieves more accurate pose-driven deforma-
tions with more stable and consistent renderings. Fig.S4
compares PERSONA with diffusion-based methods[58, 66,
69], where our method better preserves the subject’s identity
from the input image, resulting in more authentic avatars
while still accurately modeling pose-driven deformations.

Methods Frames per second
Champ [69] 0.88
MimicMotion [66] 0.36
Stable Animator [58] 0.24
PERSONA (Ours) 25.56

Table S1. Frames per second comparisons of various human ani-
mation methods.
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Champ MimicMotion StableAnimator PERSONA (Ours)

Figure S1. User preference study results from 40 participants.

2. Which option—(a), (b), (¢), or (d)—most closely matches the leftmost
reference image, considering all human features, including the face?

ERLR)

Reference image (a) (b)

Figure S2. An example of our user study.
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Figure S3. Comparison of state-of-the-art 3D-based methods [44, 45] and our PERSONA.
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Figure S4. Comparison of state-of-the-art diffusion-based methods [58, 66, 69] and our PERSONA.



S2. Avatars in canonical space

Fig. S5, S6, and S7 showcase various avatars created
from a single input image. These avatars are rendered in
canonical space without applying our pose-driven deforma-
tions. Despite being constructed from just a single image,
the avatars achieve high-quality renderings from multiple
viewpoints, including fully invisible regions, without no-
ticeable artifacts. These results highlight the effectiveness
of our avatar creation pipeline.
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(a) Input image (b) Avatars in the canonical space

Figure S5. The input image and rendered avatars in the canonical space from multiple viewpoints.
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(a) Input image (b) Avatars in the canonical space

Figure S6. The input image and rendered avatars in the canonical space from multiple viewpoints.
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(a) Input image (b) Avatars in the canonical space

Figure S7. The input image and rendered avatars in the canonical space from multiple viewpoints.



S3. Ablation studies

Balanced sampling. Fig. S8 demonstrates the effective-
ness of our 1:1 ratio between the input image and generated
frames in balanced sampling. Reducing the use of the in-
put image leads to a loss of authenticity and sharpness in
the rendering, which is expected due to the inconsistent tex-
tures in the generated frames.

Loss weights for geometry-weighted optimization.
Tab. S2 shows that using a high image loss weight (first
row) significantly degrades rendering quality. This issue is
mitigated by lowering the image loss weight (second row).
However, further reducing it slightly harms rendering qual-
ity (third row), indicating the need for a balanced trade-off.
Pose-driven deformations. Tab. S3 demonstrates that our
pose-driven deformation not only improves photometric
metrics (as shown in Tab. 2 and 3) but also enhances geom-
etry quality. Mask, depth, and normal metrics are measured
as intersection-over-union, L1 distance between rendered
and ground truth depth maps after aligning global trans-
lation, and the angular difference between rendered and
ground truth normal maps, respectively.

Variants in pre-processing stages. Tab. S4 and Tab. S5
show how different training video generators (Sec. 4) and
geometry estimators (Sec. 5.2) affect the final rendering
quality. As shown in the tables, the choice of generator or
the use of lighter geometry estimators has only a marginal
impact on rendering quality. In particular, since we use
enough number of generated frames (approximately 1K)
for optimizing PERSONA, the geometric estimation errors
from lighter models such as Sapiens [22] do not signifi-
cantly degrade the final output.

S4. Limitations

Lack of dynamics. Despite its ability to represent pose-
driven deformations, PERSONA cannot capture motion-
dependent dynamics, which rely on velocity and acceler-
ation. These dynamics are crucial for modeling complex
deformations in loose-fitting clothing and hair. While we
attempted to incorporate velocity and acceleration as addi-
tional inputs, our 3D avatar representation lacks separate
layers for garments and hair, leading to unsatisfactory re-
sults. We believe that designing separate layers for gar-
ments and hair could be an interesting direction for future
research.

Lack of fine-grained cloth wrinkles. Additionally, PER-
SONA struggles to capture fine, pose-dependent wrinkles
in clothing, likely due to the lack of 3D consistency in
diffusion-generated videos, which hinders accurate geom-
etry and texture tracking and results in oversmoothed sur-
faces.

(a) Input image  (b) 1:1 ratio (Ours)

(c) 1:2 ratio (d) 1:3 ratio (d) 1:4 ratio

Figure S8. Rendering comparisons with different input image-to-
generated frame ratios in balanced sampling. For a clearer com-
parison, avatars are rendered using the viewpoint and pose of the
input image.

Geo. weight Img. weight | PSNRT  SSIMT  LPIPS|
1 1 28.18 0.969 0.030
1 0.1 29.20 0.974 0.021
1 0.01 29.00 0.970 0.023

Table S2. Effect of loss weights in our geometry-weighted op-
timization on the NeuMan test set. The second row (in bold) is
ours.

Settings MasktT  Depth] Normall
Wo. pose-driven deform. 88.60 47.17 22.07
W. pose-driven deform. (Ours) 90.06 46.13 21.73

Table S3. Effectiveness of our pose-driven deformations on the
X-Humans [52] test set. Units for mask, depth, and normal are %,
mm, and degrees, respectively.

Generator PSNRT  SSIMT  LPIPS]
Champ 29.13 0.972 0.019
Stable Animator 28.98 0.970 0.024
MimicMotion (Ours) 29.20 0.974 0.021

Table S4. Effect of different training video generators on the Neu-
Man test set.

Sapiens models PSNRT  SSIMT  LPIPS]
0.3B (Smallest one) 28.98 0.971 0.023
1B (Ours) 29.20 0.974 0.021

Table S5. Effect of different geometry estimators on the NeuMan

test set.
: v : :

(b) Avatars in the canonical space

(a) Input image (c) Output of LHM

Figure S9. Limitation of PERSONA. Due to texture inconsis-
tencies of generated frames, used to train our PERSONA, com-
plex patterns in invisible regions are challenging to render sharply.
Even very recent feed-forward method [44] fail to generate plau-
sible textures.

Blurry rendering for complex patterns in invisible re-
gions. Fig. SO illustrates that our pipeline struggles to
achieve sharp renderings in invisible regions when com-
plex patterns are present. While our method produces plau-
sible geometry and textures for these areas, as seen in
Fig. S5 and Fig. S6, intricate patterns remain difficult to ren-
der sharply due to inconsistencies in the generated frames
used to train PERSONA. We observe that even recent feed-



forward methods [44] fail to generate plausible textures. We
believe this limitation could be addressed by incorporating
more advanced image or video generative models.

Lack of relighting capability. Lastly, omitting RGB
offsets in pose-driven deformation modeling prevents our
method from handling relighting effects, such as natural
shadows and reflections in novel environments. Addressing
these challenges remains an avenue for future work.

Long pre-processing time. Generating training videos
with diffusion-based animators requires significant pre-
processing time due to their slow inference speed. It
takes approximately one hour to generate training videos,
whereas avatar training itself additionally takes 30 minutes.
Exploring strategies to optimize data generation for a more
efficient avatar creation pipeline presents an interesting di-
rection for future research.
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